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ABSTRACT:

This article presents an approach of a multi-view stereo §y¥hethod for the generation of dense and precise 3D pointislolt

is based on the Semi-Global Matching (SGM) method followgdalfusion step in which the redundant depth estimationssacro
single stereo models are merged. We present a hierarcliaeesto- ne solution for the SGM method in which matchimgults of
low resolution pyramids are used to limit disparity searahges for high resolution pyramids. By means of large foragatal and
close range imagery we show that memory demands as well esgsiag times can be signi cantly decreased whereas théyjof
resulting disparities estimations is maintained. By meggedundant disparity estimations of multiple stereo netes precision and
robustness of the generated point clouds can be increassgéd®n basic principles of epipolar geometry we preseme éff cient
algorithm for outlier detection and object point triangida minimizing the reprojection error. Thereby the geatieeton guration of
adjacent cameras is taken into account. An implementafitimecalgorithm called SURE as well the library interfaceli8gm of the
presented algorithm is publicly available lattp://www.ifp.uni-stuttgart.de/publications/softwa re/ |

1 INTRODUCTION space method. Within our approach a reference image is etatch
to a set of adjacent images using a SGM-based stereo method.
. . o For each pair a disparity map is computed. Afterwards al dis
3D reconstruction of real world objects using imagery h@nt®  5rity maps sharing the same reference view are merged. One o
vivid research area for decades in computer vision as welhas  he advantages of this class of algorithms is that it scatelter
togrammetric community. Nowadays applications range fieen  |5rge datasets. However, in order to capitalize redundaonyss
generation of high resolution surface models using largmé&  gingle stereo pairs a proper and time ef cient fusion methasl
aerial or UAV imagery, object modeling in the Im and game 4 pe provided. Note that the presented MVS does not implemen
industry, cultural heritage documentation, surveyingdoality 5, multi-photo consistency measufé (A. Gruen, 1988) (Qkuto
control, up to driver assistance systems claiming for reaét 5.4 Kanade, 1993), instead photo consistency measureasae b

performance. Premising good geometric con guration ofueie o, single stereo pairs and geometric consistency conttraie
suf cient accuracy of interior and exterior orientationsdagood imposed at the fusion stage.

radiometric quality of imagery, state-of-the-art MVS gaus re-

construct depth estimations for nearly each image pixeligitag Dense stereo matching within our implementation is based on
precisions in the sub-pixel rande (Remondino and Zhangg00 the SGM algorithm|(Hirschmiiller, 2008). Due to its dense re
(Haala and Rothermel, 2012a). Even for radiometric lowitypial constructions preserving disparity discontinuities, bhigbust-
imagery providing extreme diversity in image content aslakée ness regarding parametrization and real-time capaliBM of-
from online photo communities models of compelling detaila ten is the technique of choice for real world applicationg@wH
size can be reconstructeéd (Merrell et al., 2007) (Goes€)@]2 ever, memory demands are extensive since photo-consgjsitenc
Despite a huge number of MVS solutions have been publishedprmation of all pixels and their sets of potential corrasgences
only few number are publicly available. Foremost PMVS, anhave to be kept in memory for the subsequent semi-global op-
implementation of a patched based MVS (Furukawa and Poncéimization. For the optimization step itself a second buffe
2010) recently gained a lot of attention. This surface gngwal-  aggregated costs of the same size is required. For large for-
gorithm initialize surface patches and the respectiventaitions  mat frames and scenes possessing large variances in depth, t
based on salient feature points. In an expansion step tFecear method demands for drastic memory consumption. This prnoble
around these patches are reconstructed. In this impletimta was recently addressed n (Hirschmdller et al., 2012) wiiee

all images are used simultaneously which implies large memaggregated costs are stored only for the eight most prolcable
ory demands. However, this issue can be overcome by clogteri didates. Although it is stated that results are of same tyuilan

the input images and then reconstructing sub spaces of éime sc the classical approach, the method comes at the price efdsed

as proposed in (Furukawa et al., 2010). As a second examplerocessing times (theoretically facttis). As memory demands

of freely available software the MicMac (Pierrot-desgitly and  and processing times for the optimization steps scale vhigh t
Paparoditis, 2006) package implements a coarse-to ne@emdi number of potential correspondences to be evaluated, nfore e
tion of the maximum ow matching algorithm proposed by (Roy cient SGM modi cations operating on limited disparity se

and Cox, 1998). Thereby global cost function for the muiéw  ranges were proposed. The rst coarse-to- ne modi catian f
correspondence problem is formulated as maximum ow prob-SGM was presented ih (Gehrig et al., 2009). In this work dispa
lem. The minimal cut then represents the surface minimittieg ity priors from low resolution imagery are used to derivegioa
global cost. In contrast, according to the taxonomy of (Seit  of interest (ROI) representing far objects. This ROI is rhatt

al., 2006), the MVS described in this article is classi edrmage  on full resolution using a limited but constant disparityaissh
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range. Then disparity priors and ROI results are mergeds Thi 2 ALGORITHMS IN SURE

is based on the idea that disparities of image parts repiegen

close objects were estimated suf ciently accurate in logote-  Given a set of oriented input images the SURE-algorithmic ex
tion matching cycles. Ir (Hermann and Klette, 2012) didpari tracts 3D point representing the scenes surface. The ingpitad
priors are used to initialize disparity search ranges oividdal tool chain is split-up into four main modules as displayedgin
pixels for matching subsequent stereo pairs. Although @dspe ure [3). In this section rst a general outline of the tool irhs

up of the matching process is attained, the algorithm stiire  given. Next, the three main software modules are described i
ates on constant disparity range buffers and does not Imeit t detail. A preprocessing module performs a network anakysis
memory requirements at all. Our stereo approach is moskesimi selection of suitable image pairs for the reconstructiorcess

to (Hermann and Klette, 2013) ard (Wenzel et al., 2011) wherend is only shortly covered in this article.

disparity priors are used to derive search ranges for ead pi Withina rst main processing step epipolar images are gateer
individually and moreover the size of all required buffers dy-  for each stereo pair. Within the second step dense matching i
namically adapted. In sectién 3 we show that this leads to sigcarried out on the generated epipolar images. Within tejs dis-

ni cant reduction of memory and time requirements. A cehtra parities/parallaxes across stereo pairs are calculategteby the
problem in hierarchical approaches and search space i@digt SGM method was modi ed in order to enable a time and memory
to estimate ranges which allow to recover from erroneousr®ri  ef cient processing. Within our tool chain an imagg in the fol-
and at the same time minimize memory consumption and compuowing referred as base image, is matched against a cetiain n
tational complexity. In[(Hermann and Klette, 2013) the @ptc  ber N of proximate (match) images resulting in a set of stereo
of semi-global distance maps is introduced for search speteg-  modelsM =1 .-y . For datasets possessing high overlaps of in-

locking valid disparities for the next level and reinitidtig dis-  tion of the surface is estimated redundantly. In the thirdioie
parities and the corresponding ranges if matching faileetalls  this redundancy is exploited to eliminate blunders andeiase

of the stereo approach are discussed in seffion|2.2.2. the accuracy of depth measurements. Thereby only depth maps
Within image space MVS methods disparity estimations of sin fused. The result is a depth image (or point cloud) with respe
gle stereo models are typically merged in order to increbse t the base imagh,.

reliability and precision of the nal depth maps or point atts.

The methods in[ (Goesele et al., 2D06) utilize a volumetric ap The information, which stereo models should be incorparate
proach for depth map fusion based pn (Curless and Levoy,)1996into the reconstruction process, is de ned by connectivity-
Thereby depth maps are used to construct a signed distatite etrices. These are stored as ASCIl les and passed to theesingl
from which a isosurface is extracted. This isosurface caafbe modules. For small datasets and structured image con igunsat
ciently converted to a triangular mesh using for example th the stereo models to be incorporated might be obvious and con
marching cube algorithm (Lorensen and Cline, 1987). In (famn nectivity matrices can be speci ed manually. However, fmge
and Goesele, 2011) an algorithm capable of fusing depth ofaps and unstructured image collections this task is not trividlere-
image sets possessing large variances in image scale was pffore, a method for the initialization of the image networlk baen
posed. Itis based on a hierarchical signed distance elthlewg  developed, which derives and Iters the connectivity imf@tion
the representation of surfaces with varying detail. Thehmes using the exterior orientation of the images. For some SEEV/B
based approach proposed |in (Turk and Levoy, 1994) removes @ackages the connectivity information is already avadablf
fuses triangles of overlapping regions across two depthsmap necessary it can be thinned out by thresholding or basedss ba
Then resultant sub-meshes are glued together. (Merrell. et alines limitation or analysis of intersection angles of thimgiple
2007) fuse a large number of limited quality stereo depthagp camera rays. If this connectivity information is not avaiaa
claiming geometric consistency incorporating con denceam 3D reconstruction for the dataset using low resolution iesaig
sures available from image matching. In a following step re-carried out. This low resolution imagery enables fast pseirey.
dundant depth estimations of fused maps are merged to one veFhen, based on the generated (sparse) 3D surface the astual o
tex and the nal mesh is generated using a quad tree methodaps, scale differences and angles across different gpaieocan
Our approach is most similar to (Koch et al., 1998) which in- be derived and pairs suitable for processing can be autcatisti
troduced correspondence linking technique for dispariypfu-  determined.

sion in sequence of images. Disparity maps are generated for

each reference view and its two adjacent views. Using hoaogr 2.1 Recti cation Module

phies redundant measurements are linked across multiphesvi

in the sequence. Outlier detection and inlier fusion fortaéee-  Within the image recti cation module epipolar images foeth
dundant disparities is performed using a Kalman lter. Besma  matching process are generated. Legandl, be a pair of im-

of the requirement to deal with unstructured image colberti  ages to be recti ed antl, andl, the resultant epipolar images.
and to incorporate a larger number of stereo models, within o 1 andly, are virtual images providing the same optical centers
approach a reference view is matched against multiple edfac as originall, and |, but posses updated rotations and internal
views. Within this cluster of views redundant corresporedsn parameters. Recti ed and original orientations then dethe
are linked and checked for geometric consistency. Comsgiste two3 3 matricesHp, Hm relating the homogeneous image co-
measurements are then fused minimizing the reprojectiar.er ordinates<,, Xm in the original images anxy,, xr, in recti ed
Using basic principles of epipolar geometry we expresstbhbp  images according to

lems of consistency check and triangulation in dependefiteso .

depth only, which enables ef cient computation. The altjori Xp = HpXp )

is explained in detail in sectidn 2.3. The result is one aateur Xm = HmXm:

depth image or point cloud per reference view. Although gene

ated point clouds are of good quality redundancy could iaéar ~ The inverse mapping can be simply calculated as

exploited by depth image integration. 1
Xp= Hyp Xp @

Xm = Hp'Xh:
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Figure 1: Flow chart of the implemented algorithm. In thei@lization module stereo pairs to be incorporated intord@nstruction
process are chosen. Selected stereo pairs then are reaticethatched. Eventually disparity maps which correspotide@ame base
image are fused and resulting depth image or point cloudacelated.

For the central task of nding the homographids andH , two within the presented framework. In our experience $he 7
algorithms are implemented. Using the approach of (Fusiell Census cos{ (Zabih and Wood Il, 1994) is the most insensitiv
et al., 2000) the rotation of the image plan@s;|,) respec- to parametrization, provides acceptable computation stiared
tively (Im;1%) is minimized. Within the method proposed by memory consumption and yields robust results. Moreovegllo
(Loop and Zhang, 1999) the projective distortion in the irect costs can be computed based on Mutual Information (P. Viola,
ed images is minimized. Despite approaches of the methogls a 1997) and the DAISY descriptar (Tola et al., 2008).
quite different, original, andl» are warped such that epipolar All parameters and options can be speci ed by the user in an
lines are horizontal and an arbitrary object poiit is mapped  ASCII control le which is parsed at program start. The injdit
to the recti ed image planes df, andl}, possessing the same this module is recti ed images as derived from the previoes r
y-coordinates, therefore ti cation module. The output is a raster data set represgritie
disparity of each base image pixel wit respect to the matetyen
Xb(Xb;y'11) = X (Xm3y'5 1) ®3)
Recall that within the operation of recti cation only theien- ) .
tation of image planes are modi ed, the optical centerand ~ 2-2-1 Review of the SGM algorithm The problem of dense

C' remain identical. As a consequence also the optical rays angfe€0 matching is densely nding corresponding pixelsossr

distances between object points and perspective centeigar- (WO Views representing the same world object. Using epipola
tical: images, potential correspondences (representing the wante

Ch, Xi=Cm Xi object) are located in the same rowigfandl » and the problem
X =G X (4)  can be reformulated as nding the disparity= xm  Xp. The
b ' b t SGM algorithm aims to estimate disparities across sterés pa
After deriving the homographidd, andH , gray values for pix-  such that the global cost function
els at integer positions in the recti ed frames are caladatin-
teger coordinateg, are mapped to the original images using E(D)= (C(xp; D (xp))
equation[{ll) and the respective gray values are intergblate Xp
The input of this module is the original imagery and the iiatier X

and exterior orientations. Within a rst step radial digton of * PTKD(xo) D (xn)k=1] (5)

the imagery is removed, then the actual recti cation isiearout. X

Thereby an interface to common structure from motion anber + P>T[KD (Xxp) D (xn)k> 1]

triangulation software (as Bundler, VSFM, Inpho...) is\pded. XN

The output is epipolar images and the corresponding intarid = | . o )

exterior orientations. is minimized. TherebyD represents the disparity image holding
disparity estimations of all base image pixels. T is an op-

2.2 Dense Stereo Matching Module erator evaluating to one if the subsequent condition is &g

evaluates to zero elsgen denote base image pixels in the neigh-
In this section the implemented module for dense image matchborhood ofx,. The global cost functio is composed of a data
ing is described. It is a stereo method based on SGM but extenderm and two terms claiming for smooth surfaces. The data ter
the classic approach as proposed in (Hirschmdiller, [209&)yb  is computed by pixel-wise similarity measur€$xp; Xm). The
namically estimated disparity search ranges. Key advastage  penalty parametei®; andP. control the gain of surface smooth-
reduced processing time, reduced memory consumption &nd thing. Within a rst step of the SGM method local cost{xy; d)
ability of processing scenes without previous knowledgeuab for each base image pixel and its set of potential correspures
depth or disparity ranges. Furthermore, ambiguities ofghon-  are calculated. Therehlyis an integer value in a constant range
sistency measures as a result of weak or high frequent eeater  d[dmin ; dmax ] de ning all the potential correspondences. Each
resolved. However, a processing mode using the classicl SG C(xyp; d) is assigned to a three dimensional, cube-shaped cost
approach operating on constant disparity search rangeis p structure of the dimensions ¢ (dmax  dmin +1) . Next,
vided. Three different types of cost functions are impletedn the aggregated cos®&(xy;d) are computed. Therefor€ are
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Figure 2: Cost structures of classic SGM (left) and tSGMhtjig

Red cubes represent costs for the true correspondencey. Grgverlap at all, the termk, (X

cubes mark the costs of potential correspondences, thudighe
parity search ranges.

recursively accumulated alomgmage paths; according to

Lr, (Xp;d) = C(Xp;d) + min (L (Xp ri;d);

Lri(Xb I'i;d 1)+ P,

Lri(Xb I'i;d+l)+ P1; (6)
Lri(Xb I'i;i)+ Pz)

min gL, (Xp ri;k)

The last subtraction guarantees that(xp; d) < C m ax(Xp; d)+
P>. The sum over all paths

X
S(xp;d) =

I

Lei (Xb;d) @)

results in a three dimensional structure holding costs &mhe
pixel and its set of potential correspondences. Computieg t
minimumdsina = min ¢S(Xp; d) for eachxy results in the -
nal disparity imag® minimizing an approximation of functional

G).

2.2.2 Modi cations of the SGM algorithm - tSGM  Within
(Hirschmdiller, 2008) a hierarchical approach was progase
initialize and re ne the MI matching cost. Initial dispayitm-
ages were computed by matching high level (low resolution) i

S(xp; d) is no longer guaranteed ( gufd 2). In disparity space
these structures represent a band containing potentjzarities

of the assumed surface. In practice all values of thesetatas:
are stored subsequently in one dimensional arrays andtdosiss
associated with a base image pixel are accessed using am imag
providing the respective offsets. Furthermore the patlumce
lation as given in equatiorf](6) had to be modi ed. Since cost
strings of neighboring pixels may overlap only partly or du n
ri;d+ k) might not exist. In
this case the bottom or top elements of the neighboring tiiistjs
Ley(Xp  Tisdmin (Xp  ri)) andb; (Xo  Fi;dmax (Xp i)

are employed. Equatiohl(6) is enhanced according to

if d>dmax (Xp Ti):
Lr, (Xp;d) = Cr, (Xp;d)+ P2
d < d min (Xb ri):
Li,(Xp;d) = Cr, (Xp;d)+ P2
else:

Lr, (Xp;d) = Lr; (Xb

if
(®)

ri;d)

Within matching of an image pair for a certain pyramid leved t
roles of base and match images are exchanged. This allowas for
consistency check of estimated disparities, clainkithg dm k

1. Moreover, speckles are ltered using an algorithm distréul

by the OpenCYV library| (Bradski, 2000).

The penalty parametd?, adapts smoothing based on the gray
values in the base image. In SURE possesses binary character
and is calculated based on an canny edge image. Whereas if an
edge was detected, low smoothing usig = P2; is applied.
Increased smoothing is forced by settidg = P21 + P2 if no
edge was detected. In addition to search range limitati@tcim

ing is carried out only on image areas representing scerte par
commonly captured in the two views. In order to derive these
image parts disparity maps of the lowest pyramid level are |

age pyramids. The resulting disparities were then used-to rgered rigorously. Afterwards pixels are passed columreviriem

ne the MI matching cost for processing the subsequent pjstam
level. Within our implementation disparities from a pyraitavel

| are furthermore used to limit the disparity search range frse
matching the next lower pyramid level 1. This hierarchical
approach is carried out for all implemented matching cobte
search ranges are determined for each base image pixeidindiv
ually. LetD' be a disparity image resulting from matching the
image pyramid. For each pixek, the new search range is deter-
mined by evaluation of valid disparities arouRd(x ). If X, was
matched successfully minimum and maximum disparitigs
anddmax contained in a rather small 7 window are derived
and stored in the two additional imagRs,, andRl.y . If Xp
was not matched successfully a largér 31 window is searched
for valid disparity estimationdmin anddmax . Moreover, the dis-
parity estimation fod(xy,) of the current level is updated to the
median value of all disparities contained in the search wind
The maximal disparity search ranges for valid and invalice|si
are limited to values of6 and32. In a next step the imagés',

the left and right image borders to the image center. All lgixe
passed before the rst successfully matched pixel is detkate
invalidated and excluded from further processing. As tte di
parity range limitation this leads to a signi cant speed dighe
matching procedure.

2.3 Structure Computation Module

In this paragraph the implemented algorithms for 3D objedattp
triangulation are described. The input of the triangulatiood-

ule are orientations of recti ed/original base and matclages
and the correspondent disparity images. The output is a 3 po
cloud or a depth image. Two main processing strategies are im
plemented. The rst strategy directly computes the depfrsim

gle stereo pairs. For aerial applications where 2.5D DSMs ar
of interest this rst approach is suf cient most of the timego
remove blunders and increase precision of point cloudvelgri
from the single stereo models, all points are assigned toungir

Rhax andRl;, areupscaled. These images de ne the disparityaligned xy-grid and height values are median ltered. Farsel

search range for matching images of the next pyramid level.
Potential correspondences during matching lévell are only
searched inthe ranggs (Xxp+ d dmin );2 (Xp+ d+ dmax )]
Note that this implies a limitation of nal search ranges3®

range and oblique aerial applications the second dispaatyfu-
sion approach is of larger importance. Dealing with real 8Dcs
ture, the griding approach and involved Iter mechanisesrat
applicable because too much information would be lost. teor

pixels for valid and64 pixels for invalid pixels. When process- to still remove blunders and improve accuracy when dealiitly w

ing the rst (highest) pyramid level no initial disparity ti®a- 3D scenes, redundant measurements across stereo models sha
tions are available. In this case all pixels in the match ienag ing a common base view are linked and checked for geometric
along the horizontal epipolar are treated a potential epwa-  consistency. Because for each set of redundant dispaesies
dences. By the pixel-wise adaption of disparity search @ang mations depth information has to be computed and time dficie
the cubic shape of arrays holding the local cd8{xp;d) and  algorithm has to be provided.



be calculated as
q

(tinXo)® + (tanXp)* +1
Dn (T nxXb)

Dipn (Xp; Tn;Dn) = (11)

TherebyT, = K 'Hp andtin, t2n denote the rst respec-
tively second row off .

Outlier elimination  In the dense stereo matching process erro-

Figure 3: Condence intervals of disparity estimationsu@l neous disparity estimations are eliminated using forwaackward
and red dotted lines) induce a ranges on the base image rapnsistency check and speckle lters. However, not all neitrhes
[bﬂ‘i” ;B 1. If these ranges overlap disparity estimations arecan be removed by these 2D Iter methods. Therefore errameou
considered consistent. disparities are Itered additionally by checking for geamecon-
sistency in object space. Itis claimed that 3D coordinatgsied
2.3.1 Structure from Stereo Pairs 3D information for a pair by re_dundan; di_sparities across a S‘?‘ of stereo modelsamia_lgp
of epipolar imagesy, 1], (as generated during recti cation de- consistent within some con dence interval. For the specésie
scribed in(Z.l) can be extracted using the well known formulaOf recti ed images _the cqn3|stency check .Of 3D points can be
(Kraus, 1994) redu_ced to a one dimensional problem. This aI_Iows for fast pr

Bf cessing and exact error modeling. Let a base image be rdcti e
Z= 7; 9) and matched againetmatch images. Furthermore it is assumed

. . that disparities are estimated with an precision de ned lopr-
the so called normal-case of stereo imagery. Beside low comyence interval along the epipolar line. The intervalinduces

putational costs precision analysis is convenient. TheBelde- uncertainty rangR, = [H"™ : b"™ ] on the optical base im-

. ; : . . ;
notes the baselinkC,  Crnk, d is the disparity and repre- 500 3y de ned byxp. Its borders are calculated according to
sents the focal lengttZ represents the z-component of the point equation[(ll) as

with respect to the camera frames. 3D coordinate computatio

for the more general case in which varyiig, fy and sheering is BT = Dy (Xp; TriDn(Xp) 05 ) (12)
present can easily be adapted by transforming the homogeneo
image coordinates, to the planez = 1, denoted by(xy; yi; 1). If the uncertainty rangeR,, of the single object points are over-

Z-coordinates with respect to the rst camera can then beueal lapping, the depth measurements are regarded as consistént
lated analogously to equation] (9) setting= 1. Respective x-  assigned to a cluster. All measurements contained by thyebig
and y coordinates can be obtained using the intercept tireore cluster are then used for the nal object point triangulatitf two
The distanc®|, between camera cent€r, and object poink |, or more clusters possess the same gizehe cluster providing

on the optical ray can be calculated as the lowest average of ray intersection angles
qg —————— 1 X
B (x))2+(y[)?+1 —  (&(X CpX Cnm)) (13)
D} = 5 (10) m o,

is considered as most reliable and used for structure camput
tion. Note that within this approach image space accurauies
correctly propagated. This is important for reliable artliletec-
tion particularly in presence of varying geometric con gtions

of stereo models.

2.3.2 Structure from Multiple Stereo Pairs In many recon-
struction scenarios captured imagery may overlap to a high d
gree. Therefore image pairs incorporated in the matchioggss
can be chosen such that redundant disparity estimatiorthéor
same surface area are available. In a rst step this redwydan

exploited to remove erroneous disparity estimations bjua®n  qyjangulation  The problem of 3D point triangulation minimiz-
pf geometric consistency. Once a set of consistent measatsm ing the reprojection error is a nonlinear problem. Typigatl

is derived ngl object point _coordlr_lates are comput(_ad. _'Ebyr is solved using iterative numerical approaches as GausdeXe
redundancy is further exploited to increase the precisfdrian- or Levenberg-Marquardt. This involves solving a linearteys
gulated points. An example for two redundantly estimategat- ¢ equations possessing a design mafixwith two rows per
ities is visualized in gure[(B). Correspondent image canades  jncorporated model. In the special case of recti ed images t
across stereo models are derived as follows. Base image pixebroblem can be reformulated as a system of equations paggess
coordinatess = ( Xp; y»; 1) are transformed to recti ed base im- 4 A with only one row per stereo model. In projective space
age coordinates; = (X5;Yp; 1) using homographies as stated gpiect point triangulation can be formulated as linear fewb
gquation[IIZ). Foxj, disp'arities.were calcylated withip the match- (R. T. Hartley, 2004). However, only an algebraic error with
ing process and coordinates in the recti ed match imageshean 4,y geometric meaning is minimized. Within SURE a method for

H —_ r gl H H
obtained ax, = (Xj + D (X});yp;1). Sincexy, in general are 31 coordinate computation by minimization of the objectcspa
real valued numbers the actual disparities are bilineatrpo-  orror from multiple redundant depth

lated. The distanc®| between the optical centers of recti ed

base images and the object point can be ef ciently calcdlate X ® D )2 < min (14)

ing equation[(I0). Linking a base image pixg) with n stereo "

models results im depth estimationéDy,;;:::; D,y ). Note that

Dy, are de ned with respect to the recti ed base coordinate sysds implengented. The solution is simply the average of esgoha
tems. However, equatiohl(4) clari es that depihg, along rec- depthsnl D . The accuracy along the optical ray can be esti-
ti ed base image rays equal the depths along the origina¢ basmated using standard deviations. Despite this methodtisgas
image rays therefor®{,, = Dpns. By extension of equation ometric properties of different image pairs are not properbd-
(@I0) depths in the common original base coordinate system caeled. Therefore an approach minimizing the reprojectioaren

n



the recti ed match images

%(xm Xm)? = min (15)

n

is provided. Reprojection errors can be expressed by scsitese

for cost computation and aggregation as used for tSGM. Assum
ing regular cubic structures, before mentioned operatoansd

be designed and executed more ef ciently for the classiGS
and lead to lower processing times. The memory consumpfion o
tSGM can be further reduced by tiled processing. Thereby til
sizes are adapted according to the available physical myemor

measurements as well as updated image coordinates aredocat

on the horizontal epipolar line. The minimum of equation) (k5
de ned by derivation and equating to zero. Using equatid) (1
and the relatioD,, = D this functional can be reformulated as
function dependent of the common unknown delpth

q
Bmn  (Xhm )  +(Vhm)* +1

)

For n stereo models this leads to a sethoéquations nonlinear
in B. The optimal® minimizing equation[(T5) is determined
using the Levenberg-Marquardt (Lourakis, Jul. 2004) or$3au
Newton algorithm. This implies linearization and solvingbo-
mogeneous linear systeAx = b. The least squares solution
is obtained a® = (ATA) *ATb. Note that since the design
matrix A is of dimensionn 1, AT A is a scalar, and no ma-
trix inversion is required. Initial depth values are ca#ted from
equation (14). Accuracies of estimated depths can be @atdin
evaluation of covariance matrices. So far we assumed atiegra
of disparities estimations to be identical. Using a-prlarowl-
edge of matching accuracies in dependence of ray inteogecti
angles, outlier detection could be re ned and weighted steju
ment could be used within the minimization of the reprojati
error.

dm:

fm (D) = (16)

3 RESULTS

3.1 Comparison of SGM and tSGM

and resulting disparity images were evaluated. For the SGM s
tion a constant disparity search range covering exactlgralla-
lent disparities was specied. The rst image pair consisfs
two (2298 2290) sub tiles cropped from two large format aerial
frames. Matching was carried out on full resolution imagdiye
resulting disparity image was calculated in 44 secondstifran

Visual comparison of the disparity images clari es that 183G
hinders reconstruction of largely undulating structusgsesented
by only few pixels in the images. As for the power pole in gure
small pixel patches might not be passed to lower pyramid le
els due to resolution reduction and smoothing. Therefagth-
dicted search range in the next higher resolution pyramighni
not contain the correct disparities and reconstructiotiHfese ob-
jects might fail. However, in many data sets the surfacesape
tured in various angles. Structures therefore might beesgpited
by a larger number of pixels in additional views, which then e
ables successful reconstruction. Moreover, the propdS&dvit
algorithm provides bene cial reconstruction of low texedrob-
jects and objects possessing repetitive texture as thérragpire

[4d. High frequencies are not passed to lower levels whichlesa
robust parallax estimation. In subsequent levels ambéaguire
resolved due to the reduced search range which leads to e-redu
tion of mismatches. The same observation holds for imags par
possessing weak texture and larger differences in appea@
the ground in the Fountain data set. When matching low pydami
levels the appearance is more similar and Census matchatg co
are more distinctive since a larger area in object spaceptsiczd

by the9 7 correlation window. As before, disparities are prop-
agated to subsequent levels and ambiguities are resolvéteby
limited disparity search range. This leads to a higher cetepl
ness of the disparity maps.

R dual core, 2.6 GHz) and is shown in gurel4a. The maximal (b)
memory consumption amounted 2.6GB. The parallax image de-

rived by tSGM was computed in 30 seconds and is displayed ir
gure @Bl A visualization of dynamic search ranges for abse-
guent pyramid levels is displayed in guré 5. Due to the restiic
size of the structures used for cost computation and cosegag
tion memory consumption of tSGM could be reduced by 68.2%
to 0.8GB. Same observation holds for processing times. iivith
this example execution time was reduced by 31.8%. Note th
for the chosen aerial scenario minimal and maximal pretalen
disparities do not heavily vary and cube structures are eemp
rable small. For scenes inducing larger variances in deggh,
particularly prevalent in close range applications, memae-
mand can be reduced by multiples. For a second test two images
from the Fountain data set (Strecha et al., 2008) were rexdtti
and matched. Matching using the classical approach waiedarr Figure 4: (a): Disparity map of classic SGM approach. (b)s-Di
out in 65 seconds (17 quad core, 3.4 GHz). The top memonyparity map of tSGM, (c): Original image (d): Absolute differ
consumption amounted 21.1 GB. The time for matching usingences in disparity maps (a) and (b)

the tSGM solution could be reduced by 8% 30 6.88 seconds.

The memory consumption could be reduced by 93t8 1.3 GB

which enables processing on standard computers. However, Figured 4t an@ 8d decode the absolute differences of the SGM
all tests SGM was calculated using the same core algorithmiand tSGM disparity images. These differences could onlydbe ¢

(© (d)
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Figure 5: Visualization of disparity search ranges of pyichlev-
els 3-0 (a-d). Blue line marks the estimated / interpolaisgat-
ity from previous pyramid level. Green and red mark the digpa
search range for current level.

culated for pixels for which disparity estimations in bottaps
were available. If a disparity was estimated only in one areno
of the maps the pixel is marked in red. Disparities diffeningre
than one pixel are mainly located at larger disparity st¥fsual
inspection leads to the conclusion that within the SGM apgino
edges are reconstructed more clearly, particularly forclbee
range example. These errors propagate and lead to difessenc
on sub-pixel level in surrounding edge areas. However, @n co
tinuous surfaces both solutions yield rather same resnttstze
differences of disparities are mostly below 0.1 pixels.

(@) (b)

© (d)

Figure 6: (a): Disparity map of classic SGM approach. (b)y-Di
parity map of tSGM, (c): Original image (d): Absolute differ
ences in disparity maps (a) and (b)

3.2 Robustness Regarding Parameters for Variety of Scenes

Insensitivity to parametrization is essential to reductersive
interference by the operator. In order to show that the #lyor
is rather robust to parametrization, datasets capturedfieyaht
type of cameras and varying geometric con gurations wee pr

ject point to be evaluated as valid. Figlide 7 shows the result
ing point clouds/meshes. The rst datasefid 7a was captured
with a large format aerial camera (UltraCamX). Side and &oov
overlap amount 80/70% possessing a GSD of 8cm. The second
datasdi 7lb was captured by a unmanned areal vehicle usimg a co
sumer grade camera (Haala and Rothermel, 2012b). The pverla
amounts 75/70% at a GSD of 4 to 8cm. The well documented
Fountain dataset (Strecha et al., 2008) provided by the E®FL
shown in gure[7Zd. Within processing each image was matched
against at least 4 proximate images leading to 27 stereolmode
and 54 disparity maps. The time for dense matching amounted
less then 3 minutes including input and output operatiofs (i
quad core, 3.4 GHz). Multi-view triangulation was carriadt o

in 63 seconds including 10 operations. The dataset disglaye
in gurel/d was collected using the camera of a mobile phone
(HTC One S). The captured object is a sculpture (approx. 1.5m
in height) captured in unbene cial light conditions. Despihe
signal-to-noise ratio of the mobile phone imagery is raibes,
dense surfaces could be reconstructed in most parts. Ire[@ér

a reconstruction of the test object 'Testy' (35cm in heightyi-
sualized. FigurE_¥f shows the reconstruction of oblique iy
agery. Thereby98frames were extracted from a video sequence
kindly provided by Fraunhofer IOSB. All displayed point alis

are direct output of the algorithm and no further point clquo-
cessing was applied.

4 SUMMARY

Within this article implementation details of the softwaeckage
SURE were presented. One main contribution is the enhamteme
of the SGM approach by the capability of searching pixel&orr
spondences using dynamic disparity search ranges. Thefiyrm
cube shaped structure storing costs of potential correfgraes

in a constant search range was modi ed to a tube-shape steuct
containing costs from dynamic search ranges. Thereby tte pa
aggregation was enhanced such that same global cost foctio
given in the classic SGM approach is minimized. The second
contribution is the exploitation of epipolar geometry foulth
view structure computation and blunder ltering. The prerl
was formulated as a nonlinear problem minimizing the reguroj
tion error in dependence of only in the depth. This set of equa
tions can be solved using iterative numerics, for which nérima
inversion is needed. At the same time blunder lItering based
the geometric consistency of disparity estimations cartiaaed

to a one dimensional clustering problem. This strategy siiniyi
disparity maps leads to depth maps with reduced number eof out
liers and increased precision. Compared to the classic SBM a
proach within our tests memory demands as well as compatatio
times could be reduced by close@%6. Moreover, the complete-
ness of results was increased. Height discontinuities weras
clearly reconstructed as in the classical approach. Thaitign
scales well to large number of images and high resolution im-
agery. This and robustness regarding parametrization sniake
suitable for reconstruction of close range, UAV and aemal i
agery. The SURE package as well as the libTSgm library provid
ing an OpenCyv APl is available for free and non-commercial us
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