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Motivation
• Model checking is a highly time consuming, labor 
intensive effort

• For example, a system of 25 components (~20K 
LOC) and 100+ properties might take up to a 
month of verification effort 

• Discourages its widespread use when system 
evolves



Software Evolution

• Software evolution is inevitable in any real 
system:
– Changing requirements

– Bug fixes

– Product changes (underlying platform, third-
party,etc.)
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Motivation
• Component-based Software

– Software modules shipped by separate developers
– Undergo several updates/bug-fixes during their 

lifecycle

• Component assembly verification
– Necessary on upgrade of any component
– High costs of complete global verification
– Instead check for substitutability of new component



Substitutability Check

• Incremental in nature
• Two phases:

– Containment check
• All local behaviors (services) of the previous 

component contained in new one

– Compatibility check
• Safety with respect to other components in 

assembly: all global specifications still hold
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Substitutability Check
• Approaches

– Obtain a finite behavioral model of all 
components by abstraction: Labeled Kripke 
structures

– Containment: 
• Use under- and over- approximations

– Compatibility: 
• Use dynamic assume-guarantee reasoning



Predicate Abstraction into LKS

• Labeled Kripke Structures
– <Q,Σ,T,P,L>

• Composition semantics
– Synchronize on shared actions

• Represents abstractions
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Component Assembly
• A set of communicating concurrent C programs 

– No recursion, procedures inlined
• Each component abstracted into a Component LKS

– Communication between components is abstracted into interface 
actions
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Predicate Abstraction into LKS
L1

lock = 0

if (x < y)
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lock=1
void OSSemPend(…) {

L1: lock = 1;
if (x < y) {

L2: lock = 0;
…
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Containment Check
• Goal: Check C µ C’

– All behaviors retained after upgrade
– Cannot check directly: need approximations

• Idea: Use both under- and over-
approximations

• Solution: 
– Compute M:  C µ M
– Compute M’: M’ µ C’
– Check for M µ M’
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Containment (contd.)
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Containment (contd.)

• Computing over-approximation
– Conventional predicate abstraction

• Computing under-approximation
– Modified predicate abstraction
– Compute Must transitions instead of May



Compatibility Check
C

Compatibility Check
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• Assume-guarantee to verify 
assembly properties

• Automatically generate assumption A 
– Cobleigh et. al. at NASA Ames

• Use learning algorithm for regular languages, L*

M1 || A ² P
M2 ² A

M1 || M2 ² P

AG - Non Circular

• Goal: Reuse previous verification results



L*   learner

Learning Regular languages: L*
• Proposed by D. Angluin, improved by Rivest et al. 

– Learning regular sets  from queries and counterexamples, Information 
and Computation, 75(2), 1987.

• Polynomial in the number of states and length of max 
counterexample
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Learning for Verification
• Model checker as a Teacher

– Possesses information about concrete components
– Model checks and returns true/counterexample

• Learner builds a model sufficient to verify properties
• Relies on both learner and teacher being efficient

• Finding wide applications
– Adaptive Model Checking: Groce et al.
– Automated Assume-Guarantee Reasoning: Cobleigh et al.
– Synthesize Interface Specifications for Java Programs: Alur et al.
– Regular Model Checking: Vardhan et al., Habermehl et al.



Compatibility Check

R1:      M1 || A ² P

R2:      M2 ² A

true
L* Assumption

Generation
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M1 || M2 2 P

-CE for A

+CE for A

Teacher

M1 || M2 ² P

true



Handling Multiple Components

• AG-NC is recursive
– (Cobleigh et al.)

R1:      M1 || A ² P
R2:        M2 ² A

M1 || M2 ² P

M1 k A1 ² P

M2 k A2 ² A1 M3 ² A2

M2 k M3 ² A1

M1 k M2 k M3 ² P

• Each Ai computed by a 
separate L* instantiation



Compatibility of Upgrades
• Suppose assumptions are available from the old assembly 
• Dynamic AG: Reuse previous verification results
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• Can we reuse previous assumptions directly?
• NO: upgrades may change the unknown U to be learned

• Requires Dynamic L*

M1 k A1 ² P M2 ² A1

M1 k M2 ² P

M’1 k A’1 ² P M2 ² A’1

M’1 k M2 ² P

Upgrade

Reuse?



Dynamic L*
• Learn DFA A corresponding to U

• Unknown language U changes to U’

• Goal: Continue learning from previous model A 

• Central Idea: Re-validate A to A’ which agrees 
with U’



Dynamic L*
• L* maintains a table data-structure to store samples

• Definition: Valid Tables
– All table entries agree with U

• Theorem 
– L* terminates with any valid observation table, OT

• When U changes to U’, 
– Suppose the last candidate w.r.t. U is A
– Re-validate OT of A w.r.t. U’
– Obtain A’ from OT’
– Continue learning from A’



Dynamic AG

M1 k A1 ² P M2 ² A1

M1 k M2 ² P

M’1 k A’1 ² P M2 ² A’1

M’1 k M2 ² P
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Implementation
• Comfort framework – explicit model checker
• Industrial benchmark 

– ABB Inter-process Communication (IPC) software
– 4 main components – CriticalSection, IPCQueue, ReadMQ, WriteMQ

• Evaluated on single and simultaneous upgrades 
– WriteMQ and IPCQueue components

• Properties
– P1: Write after obtaining CS lock
– P2: Correct protocol to write to IPCQueue



Experimental Results
Upgrade# 
(Property)

#Mem Queries Torig (msec) Tug (msec)

Ipc1 (P1) 279 2260 13
Ipc1 (P2) 308 1694 14
Ipc2 (P1) 358 3286 17
Ipc2 (P2) 232 805 10
Ipc3 (P1) 363 3624 17
Ipc3 (P2) 258 1649 14
Ipc4 (P1) 355 1102 24
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Conclusion

• Automated Substitutability Checking
– Containment and Compatibility
– Reuses previous verification results
– Handles multiple upgrades
– Built upon CEGAR framework

• Implementation
– ComFoRT framework
– Promising results on an industrial example



Future Directions

• Symbolic analysis, i.e., using SATABS

• Assume-Guarantee for Liveness

• Other AG Rules, e.g., Circular

• Combining static analysis with dynamic 
testing for facilitate abstraction and 
learning



Ph.D. position is open

• New EU project on verification of 
evolving networked software
– Collaboration with IBM, ABB, VTT, Uni

Milano and Oxford


